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Abstract. We give results of microscopic calculations for the half-lives of various proton-rich nuclei in
the mass region A = 60–90, which are involved in the astrophysical rp-process, and which are needed as
input parameters of numerical simulations in Nuclear Astrophysics. The microscopic formalism consists of
a deformed QRPA approach that involves a self-consistent quasiparticle deformed Skyrme Hartree-Fock
basis and residual spin-isospin separable forces in both the particle-hole and particle-particle channels. The
strength of the particle-hole residual interaction is chosen to be consistent with the Skyrme effective force
and mean-field basis, while that of the particle-particle is globally fixed to κ = 0.07 MeV after a judicious
choice from comparison to experimental half-lives. We study and discuss the sensitivity of the half-lives to
deformation and residual interactions.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 23.40.Hc Relation with nuclear matrix
elements and nuclear structure – 26.30.+k Nucleosynthesis in novae, supernovae and other explosive
environments

1 Introduction

Many problems in Nuclear Astrophysics usually require
the use of numerical simulations and network calculations
using weak interaction rates as input parameters [1]. High-
quality nuclear input is a necessary condition for a high-
quality astrophysical model. Thus, the models for the en-
ergy generation in stars and for nucleosynthesis may de-
pend critically on the nuclear input used.

In particular, the rapid proton capture (rp) process is
of special interest [2]. It is expected to take place in explo-
sive scenarios, such as X-ray bursts, where the necessary
conditions of high densities and temperatures are met. Ac-
tually, the relevance of the nuclear rp-process network lies
in its importance as the dynamical engine of the observed
X-ray bursts. The rp-process is characterized by the fact
that the proton capture reaction rates are orders of magni-
tude faster than the competing β+-decays. When the pro-
ton capture is inhibited, the reaction flow has to wait for a
relatively slow β+-decay to continue [2]. The longer-lived
β+ emitters are called waiting points. The half-lives of the
waiting point nuclei determine the time scales of the flow.

Calculations of β+/EC half-lives have been carried
out in the past at different levels of approximation. The
first large-scale calculations were based on the gross the-
ory [3]. This is a statistical model that averages over the
β strength distributions in the daughter nucleus ignoring
the intrinsic nuclear structure.
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More recently, many efforts have been done to calcu-
late the weak interaction rates from microscopic calcu-
lations taking into account the nuclear structure details
of the individual nuclei, see, for instance, [4–6]. Among
the microscopic methods, the proton-neutron quasipar-
ticle random phase approximation (pnQRPA or QRPA)
is one of the most reliable and widely used microscopic
approximations for calculating the correlated wave func-
tions involved in β-decay processes. The method was first
studied in ref. [7] to describe the β strength distributions.
The inclusion of a particle-particle (pp) residual interac-
tion [8], in addition to the particle-hole (ph) usual channel,
and the extension of the method to deal with deformed
nuclei [9–11] using phenomenological potentials, were ma-
jor steps to improve the method.

Self-consistent methods have been also applied to the
study of the decay properties of spherical neutron-rich nu-
clei [12] and deformed proton-rich nuclei [13–15]. In the
latter work, β-decay properties were studied on the basis
of a deformed HF+BCS+QRPA calculation with density-
dependent effective interactions of Skyrme type. This is
indeed a very suitable method to study the β-decay half-
lives of the exotic proton-rich waiting point nuclei involved
in the rp-process, namely the N = Z nuclei 64Ge, 68Se,
72Kr, 76Sr, 80Zr, 84Mo, 88Ru, and 92Pd. The experimental
information on half-lives existing on these nuclei is used to
test the model results and to assess the predictive power
of the method for network calculations of the rp-process.
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The deformed HF + BCS + QRPA with density-
dependent Skyrme forces and residual interactions con-
sistent with the mean field is a method that has been suc-
cessfully used in the description of the nuclear structure
properties of nuclei within the valley of stability. The qual-
ity of the two-body effective Skyrme interaction and the
self-consistent procedure will finally determine the extrap-
olability to unknown exotic regions. Nuclear deformation
is a relevant ingredient in this mass region [16], which
is crossed by the rp-path, and should be included in a
reliable calculation. The procedure determines the defor-
mation self-consistently, which is again a clear advantage
in regions where there is no experimental information on
nuclear shapes. Following this method, we study in this
work the half-lives of the above-mentioned waiting points
and their dependence on deformation and residual forces.

The paper is organized as follows. In sect. 2, we present
a brief summary containing the basic points in our theo-
retical description. Section 3 contains the results obtained
for the ground-state properties of theN = Z waiting point
nuclei considered, as well as the half-lives and their depen-
dence on deformation and residual forces. The conclusions
are given in sect. 4.

2 Brief summary of the theoretical formalism

In this section we summarize briefly the theoretical formal-
ism used to describe the Gamow-Teller transitions. More
details can be found in refs. [13–15].

We follow a self-consistent Hartree-Fock procedure to
generate microscopically the deformed mean field, which
is assumed to be axially symmetric. This is done with
density-dependent effective interactions of Skyrme type.
The equilibrium deformation of the nucleus is obtained
self-consistently as the shape that minimizes the energy
of the nucleus. In this work we present results obtained
with the most traditional of the Skyrme forces (Sk3) [17]
and with the force SG2 [18], which is known to provide a
good description of the spin-isospin excitations in nuclei.

The single-particle wave functions are expanded in
terms of the eigenstates of an axially symmetric harmonic
oscillator in cylindrical coordinates, using eleven major
shells in the expansion. Pairing correlations between like
nucleons are included in the BCS approximation with
fixed gap parameters for protons and neutrons. The gap
parameters are determined phenomenologically from the
odd-even mass differences.

Following Bertsch and Tsai [19], the particle-hole in-
teraction consistent with the Hartree-Fock mean field is
obtained as the second derivative of the energy density
functional with respect to the one-body density. Neglect-
ing momentum-dependent terms, the resulting local inter-
action can be written in the Landau-Migdal form. After
functional differentiation, one can establish a relationship
between the Landau and the Skyrme parameters. The re-
sulting residual local force is now approximated [13] by
a separable force by averaging the local force over the
nuclear volume assuming a constant density distribution
inside a sphere with the nuclear radius. Integrating over

this volume, we arrive to a separable spin-isospin force
whose coupling strength is determined by the Skyrme pa-
rameters and the equilibrium radius. Hence, it varies in
accordance with the Skyrme force used. The reliability
of this procedure was discussed in refs. [20,21] in the con-
text of the spin magnetic dipole excitations, which are the
∆Tz = 0 isospin counterparts of the ∆Tz = ±1 GT tran-
sitions. The conclusion was that, although less realistic,
the separable interaction contains the essential features
of the zero-range force [21]. In summary, the method is a
compromise between exact consistency and manageability
of the residual force, which is a separable residual inter-
action whose strength is consistent with the ground-state
mean field. This procedure can be viewed as an approx-
imation to the more general method [22], where the ex-
act ph residual interaction is first reduced to its Landau-
Migdal form and then the RPA matrix is expanded into
a finite sum of n separable terms. One may expect that
for radial independent RPA modes, which are considered
here, the approximation made here gives a good average
of the above-mentioned expansion. The results in ref. [21]
support this view.

The particle-particle part is a neutron-proton pairing
force in the Jπ = 1+ coupling channel. We introduce this
interaction in terms of a separable force with a coupling
strength, κppGT, determined by fitting the β-decay half-lives
of β emitters at their equilibrium shapes.

The basic quantities needed to calculate the β-decay
properties are the matrix elements connecting proton and
neutron states with Fermi or Gamow-Teller operators.

We introduce the proton-neutron QRPA phonon oper-
ator for GT excitations in even-even nuclei

Γ+
ωK

=
∑

πν

[

XωK

πν α
†
να
†
π̄ + Y ωK

πν αν̄απ

]

, (1)

where α† (α) are quasiparticle creation (annihilation)
operators, ωK are the RPA excitation energies, and
XωK

πν , Y
ωK

πν the forward and backward amplitudes, respec-
tively.

In the intrinsic frame the GT transition amplitudes
connecting the QRPA ground state |0〉 to one-phonon
states |ωK〉 satisfying

ΓωK
|0〉 = 0 , Γ+

ωK
|0〉 = |ωK〉 , (2)

are given by
〈

ωK |σKt
±|0

〉

= ∓MωK

± , (3)

where

MωK

− =
∑

πν

(qπνX
ωK

πν + q̃πνY
ωK

πν ) ,

MωK

+ =
∑

πν

(q̃πνX
ωK

πν + qπνY
ωK

πν ) , (4)

and
q̃πν = uνvπΣ

νπ
K , qπν = vνuπΣ

νπ
K , (5)

Σνπ
K = 〈ν |σK |π〉 , (6)

where v’s are occupation amplitudes (u2 = 1− v2).
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The GT strength B(GT±) in the laboratory system for
a transition IiKi(0

+0)→ IfKf (1
+K) can be obtained as

B(GT±) =
[

δK,0
〈

ωK
∣

∣σ0t
±

∣

∣ 0
〉2

+ 2δK,1
〈

ωK
∣

∣σ1t
±

∣

∣ 0
〉2

]

(7)
in (g2A/4π) units. We have used the initial and final states
in the laboratory frame expressed in terms of the intrin-
sic states using the Bohr-Mottelson factorization [23]. The
effect of angular-momentum projection is then, to a large
extent, taken into account. In the deformed cases, the spu-
rious contributions to the strengths coming from higher
angular-momentum components in the wave functions
are of the order 〈J2

⊥〉
−2 [24], where 〈J2

⊥〉 is the ground-
state expectation value of the angular-momentum opera-
tor component perpendicular to the symmetry axis. Val-
ues of 〈J2

⊥〉 for the deformed nuclei considered in this work
are always much larger than 10 [13] and therefore, spurious
contributions are expected to represent less than 1% effect.

Similarly, the Fermi strength is obtained as

B(F±) =
∣

∣

〈

ω
∣

∣t±
∣

∣ 0
〉∣

∣

2
, (8)

in (g2V /4π) units.
The β-decay half-life is obtained by summing up all

the allowed transition probabilities weighted with some
phase space factors up to states in the daughter nucleus
with excitation energies lying within the Q-window,

T−1
1/2 =

1

D

∑

ω

f (Z, ω)Bω ,

Bω = Bω(F ) +A2Bω(GT ) , (9)

where f (Z, ω) is the Fermi integral [25] and D = 6200 s.
We include standard effective factors

A2 = [(gA/gV )eff ]
2
= [0.75 (gA/gV )free]

2
. (10)

In β+/EC decay, the Fermi function consists of two parts,
positron emission and electron capture. In this work we
have computed them numerically for each value of the
energy, as explained in ref. [25].

Although the β+/EC half-lives are dominated by GT
transitions, Fermi transitions and especially superallowed
transitions to the isobaric analog state become important
for nuclei with Z > N . We have calculated these contribu-
tions and have found that they contribute to a few percent
reduction effect on the half-lives. This effect is included in
the numerical results.

3 Results for half-lives

In this section we present first the results for the bulk
properties of the nuclei under study based on the quasi-
particle mean-field description. We study first the energy
surfaces as a function of deformation. For this purpose
we perform constrained calculations [26], minimizing the
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Fig. 1. Total energy as a function of the quadrupole deforma-
tion β, obtained from constrained HF+BCS calculations with
various Skyrme forces. The distance between ticks in the verti-
cal axis is always 1 MeV, but the origin is different in each case.

HF energy under the constraint of keeping fixed the nu-
clear deformation. We can see in fig. 1 the total HF energy
plotted versus the quadrupole deformation parameter

β =

√

π

5

Qp

Zr2c
, (11)

defined in terms of the microscopically calculated quadru-
pole moment Qp and charge root-mean-square radius rc.

The results in fig. 1 correspond to HF + BCS calcu-
lations with the forces Sk3 and SG2. We observe that
both forces predict in most cases quite similar equilib-
rium shapes and structure of the energy curves. In some
instances (64Ge, 68Se, 72Kr, 76Sr and 80Zr) we obtain two
energy minima close in energy, indicating the existence of
shape isomers in these nuclei.

We can see in table 1 the microscopically calculated
charge root-mean-square radii rc and quadrupole deforma-
tions as defined in eq. (11). Other bulk properties, such as
QEC values, of nuclei in this mass region obtained within
this formalism have been already published [14], and they
are in a very reasonable agreement with experiment. In
this work we use the experimental QEC values [27] in the
calculations of the half-lives. Since the experimental infor-
mation on these nuclei is still very little, we compare in
table 1 our results with the results from relativistic mean-
field calculations of ref. [28] and with results from system-
atic calculations [16] based on macroscopic-microscopic
models (finite-range droplet macroscopic model and folded
Yukawa single-particle microscopic model). The charge
radii are quite similar but in most cases the results from
SG2 are closer to the relativistic results than those calcu-
lated with Sk3. The quadrupole deformations in table 1
correspond to the absolute minima of the energy surfaces.
However, we obtain in many cases a second minimum that
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Table 1. Charge root-mean-square radii rc (fm) and quadrupole deformations β obtained with the forces Sk3 and SG2 compared
with various works.

64Ge 68Se 72Kr 76Sr 80Zr 84Mo 88Ru 92Pd

rc this work Sk3 4.034 4.127 4.216 4.344 4.406 4.343 4.397 4.458
this work SG2 3.998 4.097 4.172 4.301 4.371 4.307 4.359 4.414

Ref. [28] 3.985 4.089 4.180 4.283 4.350 4.333 4.370 4.410

β this work Sk3 0.199 −0.216 −0.268 0.408 0.431 0.005 0.019 0.111
this work SG2 −0.192 −0.219 −0.246 0.416 0.002 0.001 0.038 0.103

Ref. [28] 0.217 −0.285 −0.358 0.410 0.437 −0.247 0.107 0.112
Ref. [16] 0.219 0.240 −0.349 0.421 0.433 0.053 0.053 0.053

in some instances is very close in energy to the absolute
one, as can be seen in fig. 1. In general we observe a good
agreement among the various theoretical calculations and
in those cases where a disagreement is found, the second
minimum mentioned above provides the explanation. This
is the case, for example, in 64Ge, where the oblate solu-
tion in SG2 (β = −0.192) is accompanied with a prolate
solution (β ∼ 0.2) very close in energy (see fig. 1). This
is also the case of the spherical solution obtained for 80Zr
with SG2. For 80Zr with SG2 we also have a prolate mini-
mum at higher energy. This prolate shape is in agreement
with the ground-state solution of Sk3 and with the results
from refs. [16,28]. The case of 80Zr has also been studied
in ref. [29], where the predictions of various Skyrme forces
were explored. It was shown that most of these forces pre-
dict a prolate ground state with a deformation compatible
with the experimental value (β = 0.39) [30], extracted by
relating the measured energy of the first 2+ excited state
with the quadrupole deformation.

The results for GT strength distributions obtained
from this formalism have been already tested against the
experimental information available. This comparison has
been done [31] in the iron mass region, where charge ex-
change reactions (np) and (pn) have been measured, and
B(GT+) and B(GT−) have been extracted. The agree-
ment with experiment is very good and comparable to the
results obtained from full shell model calculations [32]. Re-
sults for odd-A nuclei have been analyzed and compared to
experiment in ref. [15] on the example of Kr isotopes. The
method has also been used to analyze the recently mea-
sured [33] GT strength distributions in 74Kr and 76Sr. The
dependence on deformation of these distributions allows
one to conclude that the decay pattern of 76Sr is compat-
ible with a prolate shape, while that of 74Kr requires an
admixture of oblate and prolate shapes.

Once the reliability of the method has been contrasted,
we proceed now with the calculation of the half-lives in
the waiting point nuclei. Figure 2 shows the dependence
of T1/2 on the strength of the pp residual interaction, us-
ing the Skyrme force SG2. As we have mentioned, the ph
strength is fixed by the Skyrme force in a consistent way
but the pp strength remains undetermined. The half-lives
for all the waiting points in this region are plotted in fig. 2
as a function of κppGT for the equilibrium deformations that
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Fig. 2. Half-lives of the N = Z waiting points (A = 64–92)
obtained with the force SG2 as a function of the pp coupling
strength κ compared to experiment (dashed lines).

minimize the energy (see table 1). As we increase κppGT, the
GT strength is reduced and shifted to lower energies. Be-
low the QEC window there is a competition between the
global reduction of the GT strength and the accumulation
of extra strength at lower energies. The latter effect be-
comes dominant and the half-lives are suppressed as we
increase κppGT. The experimental half-life is reproduced in
almost all cases with values of κppGT around 0.07 and there-
fore this is the value postulated to be used in those cases
where the half-lives have not been measured yet.

In fig. 3 we study the sensitivity of T1/2 to deformation.
We use the force SG2 and κppGT = 0.07 MeV. We can see
how the HF+BCS half-lives are systematically lower than
the QRPA and experiment, sometimes even by one order
of magnitude. QRPA correlations reduce the mean-field
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Fig. 3. Dependence of the half-life with deformation, using
the force SG2. The results correspond to HF + BCS (dotted
line) and QRPA (solid line) calculations with κpp

GT = 0.07 MeV.
Experimental values are shown by dashed lines.

GT strength and as a result the half-lives increase accord-
ingly. Deformation can also change the half-lives by factors
up to four. What is remarkable is that the experimental
half-lives are systematically better reproduced for the self-
consistent deformations that minimize the energy, as can
be seen by comparing fig. 3 with the SG2 minima in fig. 1.
The same feature is found with the Sk3 force. This shows
to what extent self-consistency plays an important role in
the calculation of the half-lives. In this respect, it is inter-
esting to note that with the SG2 force, the experimental
value of T1/2 for 80Zr is reproduced at the SG2 equilib-
rium deformation (β ∼ 0), but not at the experimental
deformation (β ∼ 0.4) that corresponds to a higher local
minimum.

Finally, in fig. 4 we show the results for the half-lives
obtained from our approach in the even-even N = Z
waiting points from A = 64 up to A = 92. The results cor-
respond to the forces Sk3 and SG2 with the deformations
and coupling strengths residual forces discussed above.
Again, the HF+BCS results appear systematically below
the QRPA results and below the experiment. The QRPA
results from both forces agree nicely with experiment.
We get also in general agreement with the QRPA results
obtained from a different formalism based on Yukawa
potentials [4].
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Fig. 4. Half-lives of the N = Z waiting points (A = 64–92)
obtained within various approaches and compared to experi-
ment [27] for A = 64, 68, 72, 76, 80 and [34] for A = 84, 88, 92.

4 Conclusions

Using a deformed QRPA formalism, based on a self-
consistent quasiparticle mean field, which includes ph and
pp separable residual interactions, we have studied the
β-decay properties of several N = Z waiting point nuclei
involved in the astrophysical rp-process.

We have analyzed the half-lives as a function of defor-
mation and residual interactions and have found that the
best agreement with the laboratory experimental half-lives
is obtained using: a) the self-consistent deformations ob-
tained from the minimization of the energy, and b) resid-
ual interactions with a consistently derived ph strength
and κppGT = 0.07 MeV.

The results obtained indicate that this formalism is a
useful method for reliable calculations of half-lives. This
is especially interesting for applications to: i) cases where
no experimental information is available; ii) nuclei under
different conditions of densities and temperatures; and iii)
nuclei that are beyond the capability of full shell model
calculations. Work under these lines is in progress.
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